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Abstract: High-spin to low-spin crossover processes in some transition-metal complexes are described in terms of a radiation-
less nonadiabatic multiphonon process, occurring between two distinct zero-order spin states, which are characterized by dif
ferent nuclear configurations. The rate constant was expressed in terms of separate electronic and nuclear contributions. An 
evaluation of the electronic spin-orbit coupling terms is reported, while the nuclear vibrational overlap factors were estimated 
from spectroscopic and structural data. The calculated rate constants for spin crossover in some Fe(II) and Fe(III) complexes 
are calculated without introducing any adjustable parameters and are in order-of-magnitude agreement with the available ex
perimental data. 

I. Introduction 
It is one of the predictions of the ligand field theory that 

octahedral complexes of d4-d7 transition metal ions may occur 
in high- or low-spin forms depending on whether the ligand-
field splitting is smaller or greater than the interelectronic 
repulsion energies. Early measurements of magnetic suscep
tibilities of tris(dithiocarbamato)iron(III)1 complexes indi
cated that, depending on their substituents, these complexes 
can be in high spin, low spin, or spin equilibrium. Since this 
observation was reported more systems were found to be in spin 
equilibrium.2,3 Recently, rates of spin crossover were measured 
for a number of systems in solution containing iron(II),4-8 

iron(III),7,9-12 and cobalt(II)13 using the Raman laser tem
perature-jump and ultrasonic absorption techniques. The 
measured unimolecular rates for all systems investigated up 
to date are in the range of 106-109 s_1. An attempt to provide 
a theoretical description of such spin conversion processes was 
provided by Dose and colleagues,7 who started from absolute 
reaction rate theory, estimating the transmission coefficient 
from the semiclassical Landau-Zener formula and providing 
a classical description of the activation energy in terms of 
inner-sphere reorganization energy. In this paper we advance 
a general theoretical framework for the description of such 
processes. We propose that the spin crossover process can be 
described in terms of a radiationless multiphonon process oc
curring between two distinct (zero order) spin states, which 
are characterized by different nuclear equilibrium configu
rations.14-16 We shall present an attempt to calculate spin 
conversion rates in terms of such theory. Although the results 
of the calculations are in good agreement with the available 
experimental data, they should be considered only as a first 
approximation and may be helpful in order to assess the various 
factors that determine the spin conversion rates. 

Our analysis is restricted to the situation where the two spin 
states are characterized by different nuclear configurations, 
being separated by an energy barrier which is large relative to 
the thermal energy k&T. In the transition-metal complexes this 
configurational difference is manifested in terms of a stretched 
metal-ligand bond in the high-spin state, as compared to the 
low-spin state. Other interesting situations, corresponding to 
spin crossover processes in condensed phases involving the 
recombination of O2 or CO with hemoglobin or myoglobin,14 

can also be described in terms of radiationless multiphoton 
processes.1415 However, the nature of the nuclear configura
tional changes is more complex in the latter case than for spin 
conversion in transition-metal complexes. 

II. Theory 
The spin conversion processes we are considering here are 

radiationless transitions between two electronic states of the 

same complex, having two different spin states and slightly 
different nuclear equilibrium configurations. The general 
theory of multiphonon radiationless transitions, in a form 
similar to its application to the theory of electron-transfer re
actions in solution, may be applied.15-17 

The intramolecular spin conversion in solution is described 
as a transition between an initial manifold of states ĵ(f,<7c)x*i 
(<7c)0ni(<?s) with energies E\ + Ec

Ki + Es
ni and a final manifold 

of states 4>((t,qc)xKt(ac ~ Ac)0„f(qfs - As) with energies Es + 
EC

K! + £s„f, where the indexes c and s stand for the internal 
modes and the solvent modes, respectively. \pi and \j/[ represent 
the electronic wave functions in the initial and final states, 
respectively, while E\ and E( are the electronic energies in the 
initial and in the final states, respectively. (E" Ki + Es„) and 
(Ec

Kt + £s„f) denote the energies of the vibrational levels in 
both states, each corresponding to separate contributions, i.e., 
Ec from the internal modes and Es from the solvent. The 
electronic coordinates are r, while nuclear coordinates are 
represented by qc and qs. x« and <£„ are the harmonic oscillator 
nuclear states of the internal modes and of the solvent. Owing 
to configurational changes and different interactions with the 
solvent in the initial and final states, the oscillators describing 
the harmonic nuclear potential surfaces are displaced in the 
final state by the quantities A0 and As relative to the initial 
state. The product wave functions w(hqc)XK\(qc) and 
1MMc)XKf(^c — Ac) are the pure spin molecular Born-Op-
penheimer states. 

Owing to the existence of spin-orbit interaction, //so, the 
correct initial and final states are not exactly pure spin states. 
The admixture with higher electronic states [\pm\ may be ig
nored if there exists a direct coupling between the initial and 
final pure spin states; otherwise one has to use a better repre
sentation for the electronic wave functions. To first order in 
perturbation theory one gets for the initial state 

Wi=Wi + Z -JTT Thr- Wm (D 
m (xii E-mJq, 

where the energy difference (E\ — Em) is evaluated at the 
minimum energy configuration of the initial state. A similar 
expression may be written down for the final state, in which 
case the denominator has to be evaluated at the configuration 
of the final state. 

Disregarding external perturbations, the coupling between 
the initial and final states is caused by the spin-orbit interac
tion operator. Assuming that the spin conversion is a nonadi
abatic process, one can write the following formal Golden rule 
expression for the rate constant:15,16 

k=^g( Av mi E 5(A£ + E\t + £s„f - £<=„, - £'„,) 

® | < & ' l ^ s o l v V X x J X K f ) ( ^ i K ) I 2 (2) 
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where g{ is the degeneracy of the final electronic state and 
AvKi<ni stands for the operation of thermal averaging over the 
initial vibrational states: 

Avmi (•) = (Z-iZ^i)"1 E exp[-(£ s
n i + E%)/kBT] (.)(2a) 

Here, Z\ = 2Bi exp(-Es
m/kBT) and Ze

{ = 2„ exp(-f %/ 
^ B ^ ) are the partition functions for the nuclear motion of the 
solvent and of the internal motion of the complex, respectively. 
Af is the electronic energy gap AE = Ef — E1. Equation 2 
constitutes a general nonadiabatic multiphonon rate constant. 
The nonadiabatic approximation applies only if the pertur
bation matrix elements are sufficiently small. We would like 
to emphasize that the quantity one has to check for smallness 
is not just the electronic matrix element but rather the mo
lecular vibronic matrix element. We shall return to this point 
in section V. 

The expression for the rate constant may be conveniently 
written as 

k = (2Tr/h)g!\V\2G (3) 

where V represents the electronic coupling matrix element 

r - < W | f f , o | W > - Wi|#.«#f> 

+ L W i l t f i o l l M W m l t f s o U f ) 
m 

X [(E1 - £„)->„ + (Er-E„)-*9t] (4) 

The contribution of the solvent modes and of the inner vibra
tions is given by the thermally averaged nuclear Franck-
Condon vibrational overlap factor G defined as 

G = ( Z ^ ) - 1 £ txp[-(E\ + E\)/kBT] 
KjAiKfTIf 

* \(x«\x*t) (tnMP K&E + E*,,, 
+ E%-E\-EKi) (5) 

In order to get an analytic expression for G we have to use 
a sufficiently simple model for the vibrational modes of the 
system. Our model is based on the very reasonable assumption 
that the solvent may be represented by very low frequency 
oscillators (so that ftws « kBT) and, therefore, the solvent 
contribution to the rate constant can be expressed in terms of 
a single parameter, f s, the solvent reorganization energy. To 
simplify matters further, we neglect frequency changes be
tween the initial and the final states and assume that only one 
internal mode with frequency OJ, and with the displacement Ar, 
contributes to G. In this case one gets the expression16 

X exp[-S coth x-mx-(p + q- m)2x/2q] (6) 

where x = hwj2kBT is the reduced internal frequency, q = 
Es/h(c is the reduced solvent reorganization energy, p = 
AE/hu is the reduced electronic energy gap, and /„,(•) is the 
modified Bessel function of order m. The coupling parameter 
S measures the contribution of the change in the internal 
normal mode 

S = mu(Ar)2/2h (7) 

Unlike the case of electron-transfer reactions, where the 
repolarization energy, originating from long-range Coulombic 
interactions, is large,16 the solvent reorganization energy in 
the spin conversion case, which results from short-range 
complex solvent interactions, is quite small. In principle, it 
cannot be ignored because the solvent provides the continuum 
of states required for the transition. But, in practice, when its 
value is in the range of tens to hundreds cm-1, the contribution 
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Figure 1. A comparison between the temperature dependence of the 
spin-conversion rate constant as calculated from the single-mode ap
proximation, eq 8, (solid lines), and from eq 6 with the solvent reorgani
zation parameter^ = 0.3 (dashed lines). Data given forp = - 2 , 0, and 
+2 in the strong coupling limit 5 = 1 5 . 

from the continuous phonon spectrum of the medium modes 
provides a sufficient broadening mechanism at room temper
ature. Consequently, we may use the one-mode expression16 

for the thermally averaged nuclear vibrational overlap 
factor 

G ^ e x p f - S c o t h x - ^ j - y (8) 

This expression is meaningful only for discrete values of p, but 
the broadening provided by f s permits us to interpolate be
tween them. When Es is small enough (~50-100 cm -1), as we 
expect to be the case here, one gets almost the same numerical 
values for G from eq 6 and 8. This is evident from the results 
of Figure 1, which displays G calculated from eq 8 and 6 for 
q = 0.3. 

Equation 8 may provide approximate results for systems 
with more than a single displaced mode, if we interpret w as 
an average over the vibrational frequencies and take S to be 
the sum of their contributions. A graphical representation of 
the rate constant for a reasonable range of parameters is given 
in Figure 2. Taking the temperature derivatives of eq 8, one 
obtains the activation energy, which is portrayed in Figure 3. 
Figures 1-3 reveal that the conventional Arrhenius form of the 
rate constant is limited to the high-temperature range. For 
exoergic and isoenergetic processes (AE < 0) the rate constant 
flattens off at low temperatures (kBT « hu), whereupon the 
activation energy vanishes. The finite low-temperature rate 
constant reflects the occurrence of nuclear tunnelling.14b-15>16 

For endoergic processes (Af > 0) the reaction is activated also 
at low temperatures. The low-temperature activation energy 
is EA(T -— 0) = Af; as now, to ensure energy conservation, 
nuclear tunnelling can prevail only at the energy Af above the 
origin of the initial potential surface. 

One shortcoming of the theory is its incomplete consider
ation of the reaction entropy. Spin multiplicities are fully taken 
into account but entropy changes due to solvent orientation are 
ignored. This causes some ambiguity in the proper choice of 
the thermodynamic parameter p. As the free energy of reaction 
for all the systems whose spin conversion rates were measured 
is approximately zero, we decided to base our analysis of these 
systems on the value p = 0. Undoubtedly, this choice may in
troduce some uncertainty in the computed rates. Our analysis 
is based on the use of Figure 4, in which the rate constant is 
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Figure 2. Model calculations in the single-mode approximation for the 
nuclear contribution to the rate constant of spin-conversion processes, p 
=-2 ,0 , and+2; S = 10-40. 
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Figure 3. The temperature dependence of the activation energy of the 
spin-conversion process. 

given as a function of 5 for different values of hm/k^T, and 
where everything is computed for the specific case p = 0. 

The spin conversion rate constant, eq 3, is expressed in terms 
of a product of an electronic spin-orbit matrix element V and 
a nuclear Franck-Condon factor G, separating electronic and 
nuclear contributions to the dynamics of the process. We now 
proceed to consider separately these two ingredients. 

III. Calculation of Electronic Matrix Elements 
In the present calculations we assume, for the sake of sim

plicity, that the complex is characterized by octahedral sym
metry. The perturbation Zf50 being a one-electron operator, we 
can distinguish between two types of spin conversion processes: 
(a) Only the one electron state is changed upon the transition 
and, therefore, the first term in eq 4 is different from zero. This 
happens when the electronic configuration is d4 or d7. (b) Two 
electrons are involved in the transition. In this case, the first 
term in eq 4 vanishes and one has to use the second term. This 
is also the case for the electronic configuration d5 or d6. 

d6 Ions (Fe(II), Co(III)). The electronic configurations 
t2g

6 and t2g
4eg

2 of the low-spin and the high-spin forms corre
spond to 1Ag and to 5T2g ground-state terms, respectively. 
Spin-orbit coupling interactions have vanishing matrix ele-

Figure 4. The rate constant of the isoenergetic spin-conversion process vs. 
the coupling strength parameter, S. Data given for various tempera
tures. 

ments between these two terms. The only term which has 
nonvanishing matrix elements with both 1Ag and 5T2g is the 
3T ig term of the intermediate electronic configuration 
t2g5eg:>

8 

< I A l g | / / S 0 | 3 T l g > = - V 6 r (9) 

<5T2g|tfso|3 T , g > - V 3 f 

where f is the spin-orbit coupling constant. Thus according 
toeq4 

K - , V I P ( ^ + ^ 00) 

where AE \ is the energy difference between the 1T ig state and 
' Aig at the equilibrium configuration of 'Aig and AE2 is the 
energy difference between 3Tig and 5T2g at the equilibrium 
configuration of 5T2g. In the present case these energy differ
ences are approximately equal, within the uncertainties in their 
values. An approximation of this energy gap can be obtained 
from the energy-level diagrams of Tanabe and Sugano.19 The 
diagram for d6, which was calculated under the assumption 
C/B = 4.81, gives at the crossing point AE = 7.6S. The values 
of B and C are different for each complex, according to the 
nephelauxetic effect,20 being smaller than the free ion values. 
However, it is interesting to note that also the spin-orbit cou
pling constant ^ is reduced by covalency relative to its free ion 
value. Therefore, the covalency effects on B and C and on fare 
expected to cancel each other in the second-order perturbation 
term of eq 4 and 10. The reason for it can be seen from the 
structure of the molecular orbitals, as described in the equa
tion 

^ = a'/'metal ~ ^iigand ( H ) 

The constants B and C are expected to be proportional to a4, 
while f is proportional to a2.21 

From the free ion values of B = 1058 cm - ' '8 and f = 400 
cm"1 22 for Fe(II) and 5 = 1065 cm-' 19 and f = 580cm"1 22 

for Co(III), we estimate | V\ = 170 cm"1 for Fe(II) and | V\ 
= 380 cm-1 for Co(III). 

file:///Y/Y/
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d5 Ions (Fe (HI), Mn(II)). The calculations in this case follow 
closely those of the d6 case. The low-spin t2g

5 ground state is 
2T2g and that of the high-spin t2g

3eg
2 is 6Aig. The only terms 

which have nonvanishing matrix elements with both 2T2g and 
6A18 are the components 4Tlg(E") and 4T l g 5/2(U') of the 
spin-orbit multiplet of the term 4Ti8(t2g

4eg).18 

<6A l g | / / s o | 4T18(E")) = - V 2 f 

(2T28 | // s0 | 4Tlg(E")> = ^/3f (12) 

(6A18 |//so|4T lg5/2(U')) = - V 2 f 

(2T28 I//sol 4T lg5 /2(U0) = - V675f 

Thus, neglecting the energy difference within the spin-orbit 
multiplet relative to the energy difference with other terms, 
we obtain (using eq 4) 

K=1.8f2/A£ (13) 

An estimate for the value of the average energy difference AE 
is obtained from the Tanabe and Sugano diagrams (with C/B 
= 4.48),23 as A£ = 8.45. Using the free ion values for Fe(III) 
B = 1015 cm"1 19 and f = 460 cm"1,22 we obtain V = 44 
cm -1. 

d4 Ions (Cr(II), Mn(III)). The ground-state term of the low-
spin t2g

4 electronic configuration, 3T lg, in octahedral fields is 
split by the spin-orbit interaction to the terms (in the double-
group scheme) A1, T1, E2, and T2 with energies -f, —f/2, f/2, 
and f/2, respectively.18 The ground-state term of the high-spin 
t2g

3eg configuration, 5Eg, is not split by the spin-orbit inter
action. It may be decomposed as A1 + T1 + A2 + E + T2 in the 
double-group scheme. The matrix elements of /Z50 between the 
terms of high- and low-spin configurations are — y/lf, 
V572?' ~f> a n d - l / \ /2?for the sublevels A1, T1, E2, and T2, 
respectively. However, the ground state of the high-spin t2g

3eg 
state is expected to undergo large distortions due to the 
Jahn-Teller effect. As a result the state splits into two and one 
cannot use the simple symmetry classifications. The exact value 
of the electronic coupling is not known but it has to be of the 
order of fas above. The free ion values of fare 230 cm -1 for 
Cr(II) and 355 cm"1 for Mn(III).22 

d7 Ions (Co(II)). A similar situation exists with the d7 com
plexes. The high-spin (t2g

5eg
2) 4T l g state is split by the spin-

orbit interaction.18 The low-spin (t2g
6eg)

 2Eg ground state is 
not split by the spin-orbit coupling but a large Jahn-Teller 
distortion is expected. Therefore, it is difficult to do more than 
estimate the electronic coupling to be of the order of magnitude 
of f. The free ion value of f for Co(II) is 515 cm-1,22 so we take 
\V\ = 500 cm"1 for this ion. 

An interesting conclusion emerging from this calculation 
of the spin-orbit coupling terms is that the first-order contri
butions (wherever these are nonvanishing) are comparable in 
their magnitude to second-order contributions (which appear 
for the cases when the first-order term vanishes). This con
clusion is somewhat surprising as one might have argued, on 
the basis of simple perturbation-type arguments, that sec
ond-order terms should be smaller than first-order contribu
tions. We have searched for contributions of higher order terms 
to V and found these to be negligible. 

IV. Rate Constants. Comparison with Experiments 
We shall now attempt to rationalize the available experi

mental data in terms of our theory. For octahedral complexes 
the rate constant k(\V\ 2,p,S,ct),T) is given by eq 3 and 8, where 
only the totally symmetric vibrational mode Ai8 with its cou
pling parameter S and frequency ui appears. Unfortunately, 
all the systems for which the rate constants were measured 
deviate from strict octahedral symmetry. Consequently, one 
has to take into account configurational changes in several 
vibrational modes. In the evaluation of 5 one has to sum up all 

the modes, which are characterized by displacements ArK ^ 
0, so that the coupling parameter S is 

S = -£mKwK(ArK)2/2h (14) 
K 

However, we may still assume that the dominant contribution 
to S originates from the metal-ligand bonds. Since a detailed 
normal mode analysis is not practical for the complexes for 
which spin conversion rates were measured, we use a model of 
local vibrational modes. The numerical value of S is estimated 
by using characteristic frequencies for the metal-ligand bonds 
taken from analogous compounds. The mass associated with 
these modes is approximated as the mass of the atom which is 
directly bound to the metal. The change in bond length between 
the low- and high-spin states of a given complex is not directly 
measurable. The available information is the bond lengths in 
several similar complexes, from which one obtains an averaged 
value for Ar. As a result there is some uncertainty regarding 
the value of Ar in any specific case. 

Finally, we have to consider how to obtain the proper value 
of the reduced energy gap given by the parameter p in eq 6 and 
8. As was already mentioned in section II, the present theory 
does not consider fully the reaction entropy and, therefore, 
there is some ambiguity regarding the proper value of the pa
rameter/?. As AG0 ~ 0 we use, as was already discussed, the 
value p = 0 for the calculation of G in Figure 4. One has to 
remember that this choice of the energy gap introduces further 
uncertainties in the final numerical result for the rate con
stant. 

Our procedure to estimate the rate constants is to obtain the 
value of 5, eq 14, using the spectroscopic data for the metal-
ligand frequency hu and structural data for the change in the 
metal-ligand bond lengths Ar* accompanying spin crossover. 
We then utilize these values of S and of x = hm/k^T, together 
with the data of Figure 4, to obtain the value of hu/g{\ V\ 2k. 
Finally, the low-spin and high-spin rate constant k is obtained 
by utilizing the results of section III for the electronic coupling 
term V and the final-state electronic degeneracy g{. These 
theoretical values of A: are confronted with the available ex
perimental results. Data on the rates of spin conversion in so
lutions have only recently become available. Relaxation times 
down to about 30 ns have been measured using the techniques 
of the Raman laser temperature jump.7 More recently, the 
time domain was extended by the ultrasonic absorption tech
nique and relaxation times down to about 2 ns were mea
sured.8,12 

For iron(III) complexes spin conversion rate constants of 
about 5 X 107 and 2 X 108 s - 1 were found for spin conversion 
in [Fe(Sal2trien)]+ and in [Fe(acac2trien)]+,12 respectively. 
For [Fe(benzac2trien)]+ an upper limit of 1 ns was obtained 
for the relaxation time (i.e., k\, L | ^ 5 X 108 s-1).12 In the 
case of [Fe(Et2dtc)3] no excess sound absorption could be 
observed,8 which indicates a rate constant greater than 109 s_1. 
Recent measurements by the Raman laser temperature-jump 
technique on complexes with substituted Salmeen ([Fe(X-
Salmeen)2]

+) yield rate constants in the range 107-108 s-1.11 

Most of the measured complexes are of the form Fe111N^2. 
Our estimate of the spin conversion rate constant is based on 
using a vibrational frequency of 500 cm-1 for both Fe(III)-N 
and Fe(III)-O bonds24 and changes in bond length upon spin 
conversion of 0.17 and 0.04 A for these bonds, respectively.25 

Inserting these values in eq 14 gives S = 13, and on looking at 
Figure 4 {hoi/k^T~ 2.5) one obtains (hu>/\ V\2g)k~ 108cm 
S-1. In the case of Fe(III) g; = 6 for both high-spin and low-
spin states, hu) = 500 cm-1, and | V\ =44 cm -1, which gives 
hui/1 V\ 2gf ~ 0.04 cm. So we finally obtain for the rate con
stant the value k at 2 X 109 s_ l . A similar procedure for the 
case of tris(thiocarbamato)iron(III), based on an average 
metal-ligand frequency of 340 cm -126 and a change in Fe-S 
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bond length of 0.11 A,27 gives S = 12, hw/kBT ~ 1.7, and the 
estimated rate constant is k c= 3 X 1010 s_1. 

The measured spin conversion rates for iron(II) complexes 
are somewhat smaller than the rates found in iron(III) com
plexes. At 25 0C the values k\ = 5 X 106 s_1 and k-{ = 2.5 X 
107 s_1 were measured for Fe(HB(pz)3)2 in THF,8 and k\ = 
1.7 X 107 s_1 and k-\ = 7.2 X 106 s_1 for Fe(papth)2

2+ in 
water.8 Some other measurements by the Raman laser tem
perature-jump technique gave similar values for the rate 
constants.4'5,7 In order to obtain theoretical estimates for the 
value of the rate constant one needs numerical values for the 
parameters Ar, a>, and m. There is a large uncertainty in their 
values. If we take for Ar the value 0.26 A (obtained as the 
difference in bond lengths between high-spin [Fe(6-Me-
py)3tren]2+ (^B = 5.0) and low-spin [Fe(py)3tren]2+ (^8 = 
COS),28,29 hw = 300 cm"1,24 m = 14, we obtain S = 26. For 
this value, using Figure 4, we have (hu/\V\2gf)k ~ 5 X 106 

cms"1. Taking V = 170 cm"', according to the results of the 
previous section, we obtain k/gf = 5 X 108 s_1. At this point, 
we have to comment on the values of the degeneracy factors 
for the high-spin and the low-spin states of Fe(II). In octahe
dral symmetry the high-spin state is 5T2g with g = 15. How
ever, spin-conversion rates were measured for complexes which 
deviate from octahedral symmetry. Thus, the spatial degen
eracy is expected to be removed and we expect g = 5 due only 
to the contributions of the electronic spin. For the low-spin 
Fe(II), with the 'A]g state in octahedral symmetry, the de
generacy factor g = 1 will remain in lower symmetries as well. 
Thus, we can provide a very crude estimate of k ~ 1 X 109 s_1 

for this system, which is somewhat higher than the experi
mental values. Some comments about the uncertainties in
volved in the calculation of the nuclear term for spin conversion 
in Fe(II) are in order. The value we have used for Ar is the 
largest known difference in bond lengths. As the measurements 
are performed on complexes with different ligands, and not 
always in pure spin states, it is very difficult to assign a char
acteristic value for Ar. Churchill et al.30 and Dose et al.7 es
timate that Ar is in the range of 0.15-0.17 A. A computation 
based on this estimate (other parameters being taken as before) 
gives smaller values for S and therefore higher values for the 
rate constant. 

There are also some measurements of the spin conversion 
rates in Co(II) complexes. Rates of the order 5 X 106s~' were 
observed for [Co(N-R-2,6pyAId)2]

2"1",13 and rate's larger than 
109 s_1 are estimated for [Co(terpy)2]2+.8 There is no exper
imental information about Ar in such systems and, as was 
discussed in the previous section, there are difficulties in the 
quantitative estimate of the electronic coupling. Therefore, we 
do not attempt to provide a theoretical value for the rate con
stant. 

V. Concluding Remarks 
We have described the spin crossover process in terms of a 

nonadiabatic multiphonon radiationless transition between two 
(zero order) nuclear potential surfaces corresponding to two 
different electronic configurations, i.e., different spin states. 
We shall now consider the approximations inherent in this 
quantum-mechanical description, which pertain to some 
general problems as well as to technical details. 

From the point of view of general methodology, we have to 
consider the applicability of the nonadiabatic formalism, which 
stems from a first-order description of the time evolution of the 
system. The adequacy of the nonadiabatic description implies 
that the electronic coupling, V, or the electronic coupling 
dressed by vibrational overlap terms, should be small relative 
to some characteristic energies accompanying the nuclear 
motion, which is specified by the parameters ftco and S for the 
internal motion of the complex and by the parameters ho:s 
(solvent characteristic frequency) and £"s for the solvent. Two 

criteria for the applicability of the nonadiabatic limit may be 
considered. Firstly, we may disregard altogether the modula
tion by the solvent and focus attention on the quasi-one-di
mensional motion along the coordinate(s) of the complex. The 
Landau-Zener nonadiabatic limit15 is attained provided that 
Y = I V\ 2/h<j}y/Shu>k-g,T < 1, so that for characteristic values 
o fF= 10OCm-1^w = SOO cm"1, and S = 15 we get Y = 0.1, 
and this validity condition is satisfied. Next, we may consider 
the internal motion modulated by the solvent. In this case we 
suppose that the vibronic term | V\ 2G (FC\ which corresponds 
to the electronic term modified by a vibrational Franck-
Condon factor G(FC), would be small relative to solvent mod
ulation efficiency, so that £ = | V\ 2G¥C/h^yfE^k^f < 1. For 
characteristic values of V ~ 100 cm -1, G(FC) ~ exp(—S) ~ 
1O-6, ftcos ~ 10 cm -1, and Es ~ 100 cm -1, we estimate £ = 
10 -3 and this validity condition is well obeyed. These rough 
estimates inspire some confidence in the applicability of the 
nonadiabatic limit. 

Next, we consider the hidden approximations involved in 
the general nonadiabatic rate equation. Equations 2 and 5 are 
quite general, involving only the Condon approximation, where 
the spin-orbit coupling term is independent of nuclear coor
dinates and separating the nuclear motion of the solvent from 
the inner nuclear motion of the complex. As the vibrational 
states are not yet specified the partition functions Zjs and Zf 
can be different, in principle, for the low-spin (Is) -» high-spin 
(hs) process as compared to the reverse (hs) -*• (Is) reaction. 
Obviously, eq 2 is applicable for both processes. It is important 
to emphasize that the ratio of the rate constants k\s~,^s and 
^hs-is is in general 

K s ^ = iMll^L\-] exp(-A£/JfeBr) (15) 

where gt,s and g\s are the electronic degeneracies in the (hs) and 
(Is) states. Equation 15 satisfies the general conditions of de
tailed balance. The derivation of eq 6 and 8 from the basic eq 
2-5 introduced drastic assumptions regarding nuclear motion. 
First, a small number of harmonic oscillators represents the 
solvent motion and the internal nuclear motion of the complex. 
Second, configurational changes are described in terms of the 
displacements of the minima of the potential surfaces between 
the initial and the final electronic states, while frequency 
changes are neglected. This approximation implies that the 
partition function in the hs and Is states are equal where
upon 

K = (ghs/gis) exp(-A£/fcBr) (16) 

Third, the effects of configurational changes and entropy ef
fects due to solvent reorganization are disregarded. 

In the application of the simplified rate, eq 8, to real systems 
several technical simplifications were introduced. The calcu
lation of the electronic contribution V is reasonable; however, 
the numerical computation of the nuclear term G is fraught 
with difficulties as the spectroscopic and structural input data 
are unknown. Three parameters are required for specification 
of G, which are p = AEfhu, hw, and S. We have taken p = 
0 for all our calculations. This is not bad as according to eq 16 
we then have K = ghs/gis, which are quite close to the experi
mental values, i.e., K ~ 1. At the present stage of both exper
iment and theory we feel that the introduction of an additional 
(small) variable parameter p will be of little value. Spectro
scopic values for the relevant frequencies hoi are scarce. Re
garding the calculation of the coupling terms S, which in turn 
is determined by the displacements ArK, masses m, and fre
quency a), we have pointed out already that the structural data 
for ArK are scarce. Another problem is the value of the effective 
mass of the vibrational mode. We have used the atomic mass 
but, as the atom is located in a rigid aromatic ring, it seems 
reasonable that the effective mass is higher. In such a case, the 
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computed value of 5 will become larger and consequently the 
rate constant smaller. One important factor that we did not 
incorporate into the calculation of 5 is the changes in the 
equilibrium configuration of vibrational modes other than the 
metal-ligand bonds. From the deviations from octahedral 
symmetry and the ring structures appearing in all the com
plexes we have mentioned, it is clear that several other ring 
modes may contribute to S. It is impossible to give a reasonable 
quantitative estimate for their effect, but undoubtedly 5 must 
be larger than the one appearing in our calculation and, 
therefore, our estimate of the rate constant given here has to 
be considered as an upper limit. 

From this somewhat lengthy discussion of the technical 
details of the present calculation it is apparent that the nu
merical values calculated in section IV for the (Is) «=* (hs) rate 
constants should not be taken too seriously as far as absolute 
numerical magnitude is concerned. It is, however, quite re
markable that the present quantum-mechanical multiphonon 
theory led to a reasonable order-of-magnitude estimate of the 
rate constants for this class of processes without the use of any 
adjustable parameters. In particular, the present theory has 
been useful in the elucidation of electronic and nuclear con
tributions to the rate constants for this class of processes. We 
feel that rate process in condensed phases, such as (Is) <=* (hs) 
crossover considered herein, should be described in terms of 
multiphonon theories of radiationless transitions, which are 
more reliable and informative than the conventional absolute 
reaction rate theory. 
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treated theoretically in terms of short- and long-range non-
bonded interactions.8'10 

Dynamic investigations of photochemical processes12 can 
provide a wealth of information on factors which determine 
enantiomeric discriminations. We have initiated, therefore, 
systematic studies on excimer formation13 involving chiral 
molecules. ./V-[4-(l-Pyrene)butanoyl]-D-tryptophan methyl 
ester (pyr-D-Trp) and ./V[4-(l-pyrene)butanoyl]-L-tryptophan 
methyl ester (pyr-L-Trp) have been utilized in the present 
work. Using steady-state and nanosecond time resolved fluo-
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Abstract: Steady-state and nanosecond time resolved spectroscopy have been used to determine parameters for excimer forma
tion for A'-[4-(l-pyrene)butanoyl]-D-tryptophan methyl ester (pyr-D-Trp), A'-[4-(l-pyrene)butanoyl]-L-tryptophan methyl 
ester (pyr-L-Trp), and their racemate, pyr-DL-Trp, in methanol and for pyr-D-Trp in optically active (/?)-(-)-2-octanol, (S)-
(+)-2-octanol, and racemic (/?S)-(±)-2-octanoI. Appreciable differences have been noted between the behavior of the pure 
enantiomer and its racemate in MeOH. Thus, the rate constant of excimer formation for pyr-DL-Trp, (6.9 ± 0.5) 109 M - 1 s -1, 
is greater than those for the pure enantiomers, (4.0 ± 0.7) 109 M - 1 s_1. The quantum efficiency of pyr-DL-Trp excimer forma
tion (I?D/9M = 0.7 ± 0.1) is smaller than that for pyr-D-Trp or pyr-L-Trp {qo/qu = 1-1 ± 0.2). Differences in equilibrium 
constants for excimer formation indicated a chiral discrimination energy of 700 cal mol-1. Chiral discrimination originates 
in differential electrostatic, dispersion, and resonance interactions. Appreciable differences have also been observed in the ki
netic and thermodynamic parameters for pyr-D-Trp excimer formation in (i?)-(-)-2-octanol and (S)-(+)-2-octanol. 
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